Quantitative characterization of defective virus emergence by deep sequencing.

نویسندگان

  • Collin Timm
  • Fulya Akpinar
  • John Yin
چکیده

UNLABELLED Populations of RNA viruses can spontaneously produce variants that differ in genome size, sequence, and biological activity. Defective variants that lack essential genes can nevertheless reproduce by coinfecting cells with viable virus, a process that interferes with virus growth. How such defective interfering particles (DIPs) change in abundance and biological activity within a virus population is not known. Here, a prototype RNA virus, vesicular stomatitis virus (VSV), was cultured for three passages on BHK host cells, and passages were subjected to Illumina sequencing. Reads from the initial population, when aligned to the full-length viral sequence (11,161 nucleotides [nt]), distributed uniformly across the genome. However, during passages two plateaus in read counts appeared toward the 5' end of the negative-sense viral genome. Analysis by normalization and a simple sliding-window approach revealed plateau boundaries that suggested the emergence and enrichment of at least two truncated species having medium (∼5,900 nt) and short (∼4,000 nt) genomes. Relative measures of full-length and truncated species based on read counts were validated by quantitative reverse transcription-PCR (qRT-PCR). Limit-of-detection analysis suggests that deep sequencing can be more sensitive than complementary measures for detecting and quantifying defective particles in a population. Further, particle counts from transmission electron microscopy, coupled with infectivity assays, linked the rise in smaller genomes with an increase in truncated particles and interference activity. In summary, variation in deep sequencing coverage simultaneously shows the size, location, and relative level of truncated-genome variants, revealing a level of population heterogeneity that is masked by other measures of viral genomes and particles. IMPORTANCE We show how deep sequencing can be used to characterize the emergence, diversity, and relative abundance of truncated virus variants in virus populations. Adaptation of this approach to natural isolates may elucidate factors that influence the stability and persistence of virus populations in nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the Full Length Coat Protein Gene of Iranian Grapevine fanleaf virus isolates, genetic variation and phylogenetic analysis

The full-length coat protein gene of Grapevine fanleaf virus (GFLV) isolates from Iran was characterized byreverse transcription polymerase chain reaction (RTPCR) and sequencing. The expected 1515 bp coatprotein (CP) gene amplicon was obtained for 16 isolates out of 89 that were identified by double antibodysandwich enzyme-linked immunesorbent assay (DASELISA) in a population ...

متن کامل

Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing.

Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus pandemic. In both the avian influenza A(H5N1) and the recently emerging avian influenza A(H7N9) virus...

متن کامل

Deep sequencing analysis of defective genomes of parainfluenza virus 5 and their role in interferon induction.

Preparations of parainfluenza virus 5 (PIV5) that are potent activators of the interferon (IFN) induction cascade were generated by high-multiplicity passage in order to accumulate defective interfering virus genomes (DIs). Nucleocapsid RNA from these virus preparations was extracted and subjected to deep sequencing. Sequencing data were analyzed using methods designed to detect internal deleti...

متن کامل

Dynamics of defective hepatitis C virus clones in reinfected liver grafts 1 in liver transplant recipients ; ultra - deep sequencing analysis

22 23 Hepatitis C virus (HCV) reinfects liver allografts in transplant recipients, replicating 24 immediately after transplantation, followed by a rapid increase in serum HCV RNA 25 levels. We evaluated dynamic changes in the viral genetic complexity after HCV 26 reinfection of the graft liver and identified the characteristics of replicating HCV clones 27 using a massive-parallel ultra-deep se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2014